

Rodrigo Peixoto Leite

Painel de automóveis populares: o design do cluster de direção sob o aspecto da ergonomia informacional

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Design do Departamento de Artes & Design da PUC-Rio.

Orientador: Cláudia Renata Mont'Alvão

Rodrigo Peixoto Leite

Painel de automóveis populares: o design do cluster de direção sob o aspecto da ergonomia informacional

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Design do Departamento de Artes & Design do Centro de Teologia e Ciências Humanas. Aprovada pela Comissão Examinadora abaixo assinada.

Profa. Dra. Cláudia Renata Mont'Alvão Presidente/Orientadora – PUC-Rio

Prof. Dr. Vilmar Augusto Azevedo Miranda Membro – UFRJ

Profa. Dra. Luiza Helena Boueri Rebello Membro – Centro Universitário da Cidade

Prof. Dr. Paulo Fernando Carneiro de Andrade Coordenador Setorial do Centro de Teologia e Ciências Humanas – PUC-Rio

Rio de Janeiro, 20 de abril de 2006.

_

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rodrigo Peixoto Leite

Graduou-se em Desenho Industrial na PUC-Rio, na habilitação de Projeto de Produto (2002). Atua na área de design automotivo.

Ficha Catalográfica

Leite, Rodrigo Peixoto

Painel de automóveis populares : o design do cluster de direção sob o aspecto da ergonomia informacional / Rodrigo Peixoto Leite ; orientadora: Cláudia Renata Mont'Alvão . – Rio de Janeiro : PUC-Rio, Departamento de Artes e Design, 2006.

300 f.: il. (col.); 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Artes e Design.

Inclui referências bibliográficas.

- 1. Artes Teses. 2. Ergonomia. 3. Painéis automotivos.
- Design de automóveis.
 Quadro de instrumentos.
 Comandos automotivos.
 Mont'Alvão, Cláudia Renata.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Artes e Design.
 III. Título.

CDD: 700

Aos meus pais, Alberto e Dalva Leite, meus avós e a todos que em vida sempre me incentivaram a acreditar em meus sonhos. Dedico também ao grande arquiteto brasileiro, tio e amigo Antônio Rosas (in memorium).

Agradecimentos

A Deus por me permitir iniciar e concluir mais esta etapa em minha vida.

A minha orientadora à Professora Cláudia Renata Mont'Alvão pela confiança e incentivo ao meu trabalho.

Aos meus pais, Alberto e Dalva e minha avó Jacyra pela força, carinho e incentivo para comigo.

Aos Professores Anamaria de Moraes, Cláudio de Freitas Magalhães, Rita Maria Couto, Neville Larica, Manuela Quaresma, Leônidas Moraes e Rejane Spitz pelo estímulo constante.

Ao meu tio Hélio Leite por ter cedido o espaço para a construção do simulador e seu computador para o término este trabalho.

Aos amigos Adriano Abreu, Pedro Halbritter, Eduardo Brandão, Christian Smith, Aylton Pessanha, e tantos outros que colaboraram em fases distintas da pesquisa.

Aos meus amigos de infância, sempre próximos, pelo carinho, paciência e incentivo ao meu trabalho.

Aos professores da comissão examinadora.

Aos voluntários que participaram da pesquisa.

Aos funcionários do Departamento de Artes & Design da PUC-Rio.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico pelo auxílio concedido para o desenvolvimento da pesquisa.

Resumo

LEITE, Rodrigo Peixoto. MONT'ALVÃO, Claudia Renata (Orientador). Painel de automóveis populares: o design do cluster de direção sob o aspecto da ergonomia informacional. Rio de Janeiro, 2006. 300 p. Dissertação de Mestrado - Departamento de Artes, Pontifícia Universidade Católica do Rio de Janeiro.

A evolução do design de automóveis possui características interessantes, sob o ponto de vista da relação estético-funcional estabelecida em cada época. No início, os projetos de veículos únicos priorizavam a funcionalidade em detrimento do bem-estar do usuário. Com o tempo, esta maneira de se projetar foi sendo modificada, passando por períodos que valorizaram estritamente o desempenho, a aerodinâmica e a forma para um modelo onde a relação humano-máquina é o centro principal de estudo. Com novos e diferentes modelos de veículos, estes passaram a apresentar variações no posicionamento e projeto de comandos e mostradores, principalmente na região do cluster de direção. Desta forma, o presente estudo objetivou demonstrar que esta variação do posicionamento e de projeto gera confusão e erros de julgamento por parte do usuário, podendo ocasionar graves acidentes e incidentes durante a realização da tarefa, principalmente àquele que não está acostumado com o sistema a ser utilizado. Para comprovar esta hipótese, foi elaborado um estudo que, primeiramente, buscou entender o desenvolvimento dos comandos e mostradores automotivos e o uso de normas e recomendações de projeto para traçar um panorama da disposição das informações no interior dos veículos. Para o desenvolvimento da pesquisa, determinou-se o enfoque na categoria "popular". O estudo do surgimento desta categoria, do panorama atual e do perfil do consumidor, contribuiu para se tentar observar o modelo mental dos usuários em relação ao posicionamento dos instrumentos. Para isso foram aplicadas diferentes técnicas, tais como um estudo comparativo dos modelos; a aplicação de questionários com usuários motoristas; e a realização de um grupo focal. O levantamento de dados contemplou ainda a realização de testes em um simulador real de interior de veículo. Outrossim, foi possível observar constrangimentos causados pela variação do projeto e pelo posicionamento de um grupo de comandos/mostradores do cluster e sugerir recomendações para projetos futuros.

Palavras-chave

Ergonomia; painéis automotivos; design de automóveis; quadro de instrumentos, comandos automotivos.

Abstract

LEITE, Rodrigo Peixoto; MONT'ALVÃO, Cláudia Renata (Advisor). Automobile panel: cluster's design according to informational ergonomics. Rio de Janeiro, 2006. 300 p. MSc. Dissertation - Departamento de Artes & Design, Pontifícia Universidade Católica do Rio de Janeiro.

The evolution of automobiles design has interesting characteristics, under the point of view of the aesthetic-functionary relation established at each time. In the beginning, the projects of unique vehicles prioritized the functionality in detriment of well-being of the user. As time passed by, this way of projecting were being modified, passing by periods that had strict valued the performance, the aerodynamics and the form for a model which the human being-machine relation is the main center of study. With new and different models of vehicles, these had started to present variations in the positioning and project of commands and counters, mainly in the region of cluster. In this way, the present study aimed to demonstrate that this variation of the positioning and project generates confusion and errors of judgment by the user, and can cause serious accidents and incidents during the accomplishment of the task, mainly to that user that is not familiar with the system to be used. To state this hypothesis, a study was elaborated that, first, searched to understand the automotive development of the commands and counters and the use of norms and recommendations of project to trace a panorama of the disposal of the information in the interior of the vehicles. For the development of the research, the approach in "the popular" category was determined. The study of the sprouting of this category, the current panorama and the profile of the consumer, it contributed to try itself to observe the mental model of the users in relation to the positioning of the instruments. For this different techniques had been applied, such as a comparative study of the models; the application of questionnaires with drivers; and the realization of a focus group. The data-collecting still contemplated the accomplishment of tests in a real simulator of vehicle interior. Thus, it was possible to observe constraints caused by the variation of the project and the positioning of a group of commands/displays in the cluster and to suggest recommendations for future projects.

Keywords

Ergonomics and automotive panels; automobile design; instrument cluster; automotives commands.

Sumário

11 Introdução	19
2 A Questão da segurança segundo a ergonomia e os painéis de veículos	21
2.1. O desenvolvimento dos painéis de instrumentos na 2ª Guerra Mundial	21
2.2. A ergonomia aplicada aos painéis automotivos: analisando o automóvel	
como um produto	26
2.2.1. A Convergência de tecnologias	29
2.2.2. Usabilidade nos painéis de automóveis	31
2.2.3. Normas e recomendações no desenvolvimento de painéis automotivos	34
2.3. Variações de comandos e mostradores de painéis automotivos	38
2.4. Conclusão do capítulo	50
3 O carro popular no Brasil	51
3.1. O automóvel no Brasil	51
3.2. Antecedentes do carro popular no Brasil e no mundo	70
3.2.1. O DKW Vemag	72
3.2.2. Willys Dauphine/Gordine	75
3.2.3. O Fusquinha	77
3.2.4. Ford Corcel	79
3.2.5. Fiat 147	79
3.3. O conceito de carro popular no Brasil	82
3.4. O mercado atual brasileiro de veículos populares	88
3.4.1. Volkswagen (Gol/Parati/Fox)	89
3.4.2. Ford (Ka/Fiesta)	91
3.4.3. Chevrolet (Corsa/Celta)	93
3.4.4. Fiat (Uno/Palio/Siena)	94
3.4.5. Peugeot (206)	95
3.4.6. Renault (Clio/Kangoo)	96
3.4.7. Hyundai (Atos)	96
3.5. O perfil do consumidor dos "populares"	97
3.6. A interferência do consumidor nos carros populares: customização,	
personalização ou "tuning".	100

3.7. Conclusão do capítulo	107
4 Delineamento da pesquisa	109
4.1. Tema	109
4.2. Problema	110
4.3. Hipótese	110
4.4. Variáveis	111
4.4.1. Variáveis independentes	111
4.4.2. Variáveis dependentes	112
4.5. Objeto da pesquisa	112
4.6. Objetivo Geral	112
4.7. Justificativa	112
4.8. Recorte da pesquisa	113
5 Método, técnicas e procedimentos da pesquisa	116
5.1. Estudo comparativo	117
5.1.1. Peugeot 206 Sensation 1.0 2p.	118
5.1.2. Renault Clio Authentique 1.0 8v 2p.	121
5.1.3. Ford Novo Fiesta 1.0l Personnalite	124
5.1.4. Fiat Novo Palio EX 1.0 8v. 2p.	127
5.1.5. Chevrolet Novo Corsa Hatch VHC Joy 1.0 4p.	129
5.1.6. Volkswagen Fox City 1.0	133
5.2. Caixa morfológica	136
5.3. Test-Drive	146
5.3.1. Test-drive Peugeot 206 Sensation 1.0 2p.	150
5.3.2. Test-drive Renault Clio Authentique 1.0 8v 2p.	152
5.3.3. Test-drive Novo Palio EX 1.0 8v 2p.	154
5.3.4. Test-drive Novo Fiesta 1.0l Personnalite	155
5.3.5. Test-drive Fox City 1.0	158
5.3.6. Test-drive Novo Corsa Hatch VHC Joy 1.0 4p.	160
5.4. Questionários	161
5.4.1. Aplicação do questionário	163
5.4.2. Vantagens do uso de questionário	163
5.4.3. Desvantagens do uso de questionário	163
5.4.4. Aplicação do questionário estruturado	164
5.5. Grupo de foco	166
5.5.1. Vantagens e desvantagens do Grupo de Foco	167

5.5.2. Utilização do Grupo de Foco	169
5.5.3. Planejamento do Grupo de Foco	170
5.5.4. Tratamento dos dados	175
5.5.5. Aplicação do Grupo de Foco	175
5.6. Observação simulada através do uso de simulador	177
5.6.1. O Simulador F741	179
5.6.2. Construção do Simulador F741	179
5.6.3. Seleção da amostra	189
5.6.4. Aplicação do questionário semi-estruturado	189
5.6.5. Descrição do experimento	190
6 Resultados e análise dos dados obtidos	194
6.1. Estudo comparativo	194
6.2. Test-drive	197
6.3. Questionário estruturado	198
6.4. Grupo de foco	200
6.5. Questionário semi-estruturado	207
6.6. Tarefa simulada	217
7 Recomendações e discussão final	225
7.1. Introdução	225
7.1.1. Velocímetro	226
7.1.2. Tacômetro	227
7.1.3. Velocímetro e tacômetro acoplados	227
7.1.4. Inversão de posicionamento entre tacômetro e velocímetro	228
7.1.5. Mostrador do nível de combustível no tanque	228
7.1.6. Mostrador do nível de temperatura	229
7.1.7. Inversão de posicionamento entre marcador do nível de combustíve	e do
nível de temperatura	229
7.1.8. Luzes-espia	230
7.1.9. Observações em geral	230
7.2. Recomendações propostas	231
7.3. Lições aprendidas e considerações finais	234
7.4. Desdobramentos da pesquisa	236
8 Referências bibliográficas	237

9 Glossario	244
10 Apêndices	247
10.1. Tabela de comparativo de equipamentos dos veículos selecionados	247
10.2. Questionário estruturado	252
10.3. Resultados do questionário estruturado	254
10.4. Roteiro para perguntas do grupo de foco	260
10.5. Transcrição do grupo de foco	261
10.6. Questionário semi-estruturado	287
10.7. Resultados do questionário semi-estruturado	290
10.8. Planta da sala onde foi realizado o teste simulado	292
10.9. Arranjos de clusters produzidos na tarefa simulada	293
10.10. Resultados da tarefa simulada	295

Lista de figuras

Figura 1 – Painel do avião DC-7 (RUUD LEEUW, [2006]).	22
Figura 2 – Painel do avião Superconstellation (WIN JACK'S [2005]).	23
Figura 3 – Cabine do maquinista (HESKETT, 1998), p. 167.	25
Figura 4 – Fiat Stilo Connect: convergência de sistemas tecnológicos.	30
Figura 5 – Comandos do tipo thumb wheel.	40
Figura 6 – Exemplo de comando do tipo alavanca, à esquerda, painel do Monzo	za
(MANUAL DO PROPRIETÁRIO DO MONZA, 1984) e à direita, do Uno.	40
Figura 7 – Comandos de deslizamento lateral.	41
Figura 8 – Comandos do tipo botão giratório.	41
Figura 9 – Comandos do tipo botão de pressão.	42
Figura 10 – Comandos do tipo interruptor: Lada Laika e Fiat 147.	43
Figura 11 – Alavancas: controles de liga/desliga ou gradação (SAE J1139).	45
Figura 12 – Comandos dos vidros elétricos: Gol GTi 1989, à esquerda e Parat	i.
GLS 1992.	46
Figura 13 – Comandos dos vidros elétricos: Gol GTi 1994, à esquerda (QUAT	RO
RODAS, 1994) e Prêmio (QUATRO RODAS, 1998).	46
Figura 14 – Cluster com odômetro digital do Kadett GSi (MANUAL DO	
PROPRIETÁRIO DO KADETT/IPANEMA, 1992).	49
Figura 15 – Peugeot Type 3 (PEUGEOT FANS CLUB, [2004]).	52
Figura 16 – 1ª fábrica da Ford no país, em 1919 (QUATRO RODAS, 2000).	54
Figura 17 – Inauguração da fábrica da GM no Brasil (AUTOMÓVEL &	
REQUINTE, 2001).	56
Figura 18 – Apresentação do Ford Galaxie em São Paulo (QUATRO RODAS,	
1990b).	59
Figura 19 – VW 1600 "Zé do Caixão" e TL.	60
Figura 20 – Um dos primeiros Chevette lançado no país.	62
Figura 21 – Painel do Chevette 1973. Adaptado (QUATRO RODAS, 1973).	62
Figura 22 – Cluster do Chevette.	63
Figura 23 – Visão do interior da Brasília.	64
Figura 24 – Teste do Fiat 147 na Ponte Rio-Niterói (QUATRO RODAS, 1978).	65
Figura 25 – Um dos primeiros modelos do VW Gol.	66
Figura 26 – Painel do Gol década de 80.	66
Figura 27 – Chevrolet Monza e Opel Ascona (BILLING AUTOS, [2005]).	68

Figura 28 – Jaguar MK 1959 com freios <i>ABS</i> (HERITAGE CLASSICS, [2004]). 68
Figura 29 – Demonstração da Cadillac (HESKETT, 1998), p.71.	71
Figura 30 – Painel de instrumentos da Vemaguet (QUATRO RODAS, 1978).	73
Figura 31 – Comandos da Vemaguet (QUATRO RODAS, 1962), p.92.	73
Figura 32 - DKW Vemaguet Pracinha.	74
Figura 33 – Gordini e seu painel.	76
Figura 34 – Fusca "Pé-de-Boi" (BEST CARS, 2001).	78
Figura 35 – Corcel I e seu painel.	79
Figura 36 – Painel do Fiat 147.	81
Figura 37 – Cluster do Fiat 147 1977.	81
Figura 38 – Anúncio do Ford LTD 1968. (AMIGOS DO GALAXIE, [2004]).	83
Figura 39 – Renault R8. (R8 CLUB, 2005) e Fiat Uno Mille (DIVULGAÇÃO).	84
Figura 40 – Satélites do painel do Uno Mille.	85
Figura 41 – Gol 1000: vidro colado (QUATRO RODAS, 1992) e cluster.	86
Figura 42 – Cluster do Fusca "Itamar".	87
Figura 43 – Gol Special e City: seria a aplicação do Styling? (DIVULGAÇÃO)	. 90
Figura 44 – Ford Ka e seu cluster.	92
Figura 45 – Chevrolet Celta e o detalhe da tampa de combustível.	94
Figura 46 – Fiat Uno Mille Fire e seu cluster.	94
Figura 47 – Hyundai Atos Prime.	97
Figura 48 – Fusca-57 e Fusca-Rolls-Royce.	102
Figura 49 – Moncedes 190E e Monza Conversível.	102
Figura 50 – "Tunados": Fusca com faróis do Ford Ka e Chevette Junior.	103
Figura 51 - Tuning popular no Fiat 147 e o de fábrica, no Gol GTI.	104
Figura 52 – Gol 1000 original e a versão "tunada".	104
Figura 53 – Belina caracterizada como off-road e a Belina original.	105
Figura 54 – Gol Trend e Cross Fox.	105
Figura 55 – Personalização do cluster.	106
Figura 56 – Cluster do Peugeot 206.	119
Figura 57 – Cluster aceso do Peugeot 206.	119
Figura 58 – Panorama do painel do Peugeot 206.	120
Figura 59 – Display central MTN e botão do pisca-alerta.	121
Figura 60 - Cluster do Renault Clio.	123
Figura 61 – Panorama do painel do Renault Clio.	123
Figura 62 – Cluster do Ford Fiesta.	125
Figura 63 – Panorama do painel do Fiesta brasileiro, à esquerda, e europeu	

(REPORT MOTORI, 2004).	127
Figura 64 – Cluster do Fiat Novo Palio.	128
Figura 65 – Panorama do painel do Novo Palio.	129
Figura 66 – Panorama do Painel do Novo Corsa.	130
Figura 67 – Cluster do Novo Corsa.	131
Figura 68 – Comando de acionamento de farol do Novo Corsa.	132
Figura 69 – Fox City.	133
Figura 70 – Painel do Corsa 1994, à esquerda, e do Fox City.	134
Figura 71 – Cluster do Fox City.	135
Figura 72 – Propaganda do Fiesta Class.	156
Figura 73 – Detalhe da linha de cintura do Novo Fiesta.	157
Figura 74 – Desenho do painel do Fox.	159
Figura 75 – Mudança de nomenclatura dos veículos no questionário piloto.	165
Figura 76 – Divulgação do questionário no site de relacionamentos Orkut.	165
Figura 77 – Alguns rascunhos conceituais para a construção do simulador.	180
Figura 78 – Fiat 147 GL 1978 utilizado na construção do simulador.	180
Figura 79 – Desmontagem do veículo.	181
Figura 80 – Retirada de peças.	182
Figura 81 – Corte do veículo.	182
Figura 82 – Separação das peças cortadas.	183
Figura 83 – Retirada de parte do chassi.	183
Figura 84 – Preparação do chassi.	184
Figura 85 – Acabamentos em geral.	184
Figura 86 – Imagem da ante-sala.	185
Figura 87 – Acoplagem das peças fixas.	185
Figura 88 – Construção do painel.	187
Figura 89 – Painel do simulador.	187
Figura 90 – Panorama do simulador com as peças móveis.	188
Figura 91 – Visão superior do Simulador F741.	188
Figura 92 – Ante-sala: participantes aguardando o momento do teste.	190
Figura 93 – Participantes preenchendo o questionário semi-estruturado.	191
Figura 94 – Participantes observando os mostradores disponíveis.	191
Figura 95 – Participantes selecionando os mostradores.	192
Figura 96 – Participantes montando o cluster de direção.	192
Figura 97 – Exemplo de configuração de cluster escolhida pelos usuários.	193
Figura 98 – Distribuição por veículos.	198

Figura	99 – Motorização dos veículos dos participantes.	207
Figura	100 – Tempo de uso do veículo.	208
Figura	101 – Tempo de uso diário do veículo.	208
Figura	102 – Observação do tacômetro.	209
Figura	103 – Observação do velocímetro.	210
Figura	104 – Percentual de homens e mulheres respondentes.	210
Figura	105 – Faixa etária dos participantes.	211
Figura	106 – Grau de instrução dos respondentes.	211
Figura	107 - Tempo de habilitação dos respondentes.	212
Figura	108 – Exemplo de pontos positivos destacado pelo respondente.	213
Figura	109 – Exemplo de pontos positivos destacado pelo respondente.	213
Figura	110 – Exemplo de pontos positivos destacado pelo respondente.	213
Figura	111 – Destaque dos pontos negativos de um respondente.	214
Figura	112 – Destaque dos pontos negativos de um respondente.	214
Figura	113 – Destaque dos pontos negativos de um respondente.	215
Figura	114 – Destaque dos pontos negativos de um respondente.	215
Figura	115 – Posicionamento do símbolo de combustível Peugeot 206.	215
Figura	116 - Composição com os instrumentos mais utilizados.	217
Figura	117 – Questionário estruturado via <i>internet</i> .	252
Figura	118 – Questionário estruturado via <i>internet</i> .	252
Figura	119 – Questionário estruturado via <i>internet</i> .	253
Figura	120 – Questionário estruturado via <i>internet</i> .	253
Figura	121 – Faixa etária.	254
Figura	122 - Percentual de homens e mulheres respondentes.	254
Figura	123 – Distribuição por Estados.	254
Figura	124 – Distribuição por veículo.	254
Figura	125 – Fox: Capacidade de localização dos comandos do painel.	254
Figura	126 – 206: Capacidade de localização dos os comandos do painel.	254
Figura	127 - Clio: Capacidade de localização dos comandos do painel.	255
Figura	128 – Corsa: Capacidade de localização dos comandos do painel.	255
Figura	129 - Palio: Capacidade de localização dos comandos do painel.	255
Figura	130 - Fiesta: Capacidade de localização dos comandos do painel.	255
Figura	131 – Fox: Conhecimento das funções dos comandos do painel.	255
Figura	132 – 206: Conhecimento das funções dos comandos do painel.	255
Figura	133 - Clio: Conhecimento das funções dos comandos do painel.	256
Eiguro	134 — Carea: Canhacimenta das funções dos comandos do nainal	256

Figura 135 – Palio: Conhecimento das funções dos comandos do painel.	256
Figura 136 – Fiesta: Conhecimento das funções dos comandos do painel.	256
Figura 137 – Pré-disposição dos usuários para participar de uma entrevista	a. 256
Figura 138 – Faixa etária.	257
Figura 139 – Percentual de homens e mulheres repondentes.	257
Figura 140 – Pré-disposição dos usuários para participar de uma entrevista	a. 257
Figura 141 – Distribuição por veículo.	257
Figura 142 – Fox: Capacidade de localização dos comandos do painel.	257
Figura 143 – 206: Capacidade de localização dos comandos do painel.	258
Figura 144 – Clio: Capacidade de localização dos comandos do painel.	258
Figura 145 – Corsa: Capacidade de localização dos comandos do painel.	258
Figura 146 – Palio: Capacidade de localização dos comandos do painel.	258
Figura 147 – Fiesta: Capacidade de localização dos comandos do painel.	258
Figura 148 – Fox: Conhecimento das funções dos comandos do painel.	258
Figura 149 – 206: Conhecimento das funções dos comandos do painel.	259
Figura 150 – Clio: Conhecimento das funções dos comandos do painel.	259
Figura 151 – Corsa: Conhecimento das funções dos comandos do painel.	259
Figura 152 – Palio: Conhecimento das funções dos comandos do painel.	259
Figura 153 – Fiesta: Conhecimento das funções dos comandos do painel.	259
Figura 154 – Veículo Próprio.	290
Figura 155 – Tipo de motorização.	290
Figura 156 – Tempo de uso do veículo.	290
Figura 157 – Horas ao dia dirigindo.	290
Figura 158 – Identificação dos comandos mostradores do painel.	290
Figura 159 – Dificuldade na identificação dos comandos e mostradores.	290
Figura 160 – Equívocos de leitura.	291
Figura 161 – Observação do conta-giros.	291
Figura 162 – Observação do velocímetro.	291
Figura 163 – Percentual de homens e mulheres repondentes.	291
Figura 164 – Faixa etária.	291
Figura 165 – Grau de escolaridade.	291
Figura 166 – Tempo de habilitação.	291
Figura 167 – Freqüência de uso de cada mostrador do velocímetro.	295
Figura 168 – Freqüência de uso do velocímetro quanto ao tipo deste.	295
Figura 169 – Freqüência de uso do tacômetro.	295
Figura 170 – Freqüência de uso cada tacômetro.	296

Figura 171 – Freqüência de uso do tacômetro por tipo de escala.	296
Figura 172 – Freqüência de uso mostrador de temperatura.	296
Figura 173 – Freqüência de uso de cada mostrador do nível de temperatura.	296
Figura 174 – Freqüência de uso de cada mostrador do nível de combustível.	297
Figura 175 – Freqüência de uso do mostrador do nível de combustível por tip	0
de escala.	297
Figura 176 – Posicionamento velocímetro versus tacômetro.	298
Figura 177 – Freqüência do posicionamento do marcador de combustível	
(lateralidade).	298
Figura 178 – Freqüência do posicionamento do marcador de combustível	
(verticalidade).	298
Figura 179 – Freqüência do posicionamento do marcador de combustível	
(lateralidade).	299
Figura 180 – Freqüência do posicionamento do marcador de combustível	
(verticalidade).	299
Figura 181 – Freqüência do posicionamento do marcador de combustível em	
relação ao tacômetro e velocímetro.	299
Figura 182 – Freqüência do posicionamento do marcador de temperatura em	
relação ao tacômetro e velocímetro.	299
Figura 183 – Orientação do marcador de combustível.	300
Figura 184 – Orientação do marcador de temperatura.	300

Lista de tabelas

Tabela 1 – Produtos tradicionais versus modernos. JURAN & GRYNA (1992	
apud FIOD NETO et al., 1998).	29
Tabela 2 – Controles de liga/desliga ou gradação (SAE J1139).	44
Tabela 3 – Controles do tipo interruptor para vidros elétricos (SAE J1139).	45
Tabela 4 – Empresas pioneiras. In (ORSINI,1967 e SHAPIRO, 1994 apud	
FONSECA, 1996).	58
Tabela 5 – Exemplo da técnica da Caixa Morfológica (BOMFIM, 1995).	138
Tabela 6 – Características dos velocímetros.	139
Tabela 7 – Características dos tacômetros.	141
Tabela 8 – Características dos marcadores do nível de combustível.	142
Tabela 9 – Características dos marcadores do nível de temperatura do líquic	lo de
arrefecimento do motor.	144
Tabela 10 – Informações sobre os participantes do Grupo de Foco.	176
Tabela 11 – Velocímetros dos veículos selecionados.	218
Tabela 12 – Tacômetros dos veículos selecionados.	218
Tabela 13 – Mostradores de temperatura dos veículos selecionados.	219
Tabela 14 – Mostradores de combustível dos veículos selecionados.	220